Minimal Weierstrass equation
\(y^2=x^3+18x\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(3, 9\right) \) |
\(\hat{h}(P)\) | ≈ | $0.71474134868387035118438908301$ |
Torsion generators
\( \left(0, 0\right) \)
Integral points
\( \left(0, 0\right) \), \((3,\pm 9)\), \((6,\pm 18)\), \((72,\pm 612)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 2304 \) | = | \(2^{8} \cdot 3^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-373248 \) | = | \(-1 \cdot 2^{9} \cdot 3^{6} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( 1728 \) | = | \(2^{6} \cdot 3^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z[\sqrt{-1}]\) | (potential complex multiplication) | |
Sato-Tate group: | $N(\mathrm{U}(1))$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(0.71474134868387035118438908301\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(1.8002759999214539912407190766\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 8 \) = \( 2\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 256 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 2.5734633923741266002289673990323402740 \)
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(III\) | Additive | -1 | 8 | 9 | 0 |
\(3\) | \(4\) | \(I_0^{*}\) | Additive | -1 | 2 | 6 | 0 |
Galois representations
The mod \( p \) Galois representation has maximal image for all primes \( p < 1000 \) .
The image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=-1\).
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ordinary | ss | ss | ordinary | ordinary | ss | ss | ordinary | ss | ordinary | ordinary | ss | ss |
$\lambda$-invariant(s) | - | - | 3 | 5,1 | 1,1 | 1 | 1 | 1,1 | 1,1 | 1 | 1,1 | 1 | 1 | 1,1 | 1,1 |
$\mu$-invariant(s) | - | - | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 | 0,0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class 2304p
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$4$ | 4.2.18432.3 | \(\Z/4\Z\) | Not in database |
$8$ | 8.0.1358954496.9 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.4.5435817984.2 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.5435817984.7 | \(\Z/8\Z\) | Not in database |
$8$ | 8.2.36691771392.4 | \(\Z/6\Z\) | Not in database |
$8$ | 8.0.169869312000.8 | \(\Z/10\Z\) | Not in database |
$16$ | 16.0.118192468620711297024.15 | \(\Z/4\Z \times \Z/8\Z\) | Not in database |
$16$ | 16.0.1346286087882789617664.2 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/10\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/10\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.