Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -840, 9344])

gp: E = ellinit([0, 0, 0, -840, 9344])

magma: E := EllipticCurve([0, 0, 0, -840, 9344]);

$$y^2=x^3-840x+9344$$ ## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(8, 56\right)$$ $$\hat{h}(P)$$ ≈ $1.8587798938749520183338614572$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(16, 0\right)$$ ## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(8,\pm 56)$$, $$\left(16, 0\right)$$, $$(25,\pm 63)$$ ## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$2304$$ = $$2^{8} \cdot 3^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$214990848$$ = $$2^{15} \cdot 3^{8}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{2744000}{9}$$ = $$2^{6} \cdot 3^{-2} \cdot 5^{3} \cdot 7^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$0.46416531023092246778632308295\dots$$ Stable Faltings height: $$-0.95157480980306401468283968733\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1.8587798938749520183338614572\dots$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$1.7822792389452546107167004408\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$4$$  = $$2\cdot2$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + 4q^{7} - 4q^{11} - 4q^{13} + 2q^{17} - 4q^{19} + O(q^{20})$$ For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1024 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$3.3128648146221906155154341556593058333$$

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$III^{*}$$ Additive -1 8 15 0
$$3$$ $$2$$ $$I_2^{*}$$ Additive -1 2 8 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X82d.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 5 & 15 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 10 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 7 \end{array}\right)$ and has index 48.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add ss ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary - - 1,1 1 1 1 1 1 1 1 1 1 1 1 1 - - 0,0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 2304.j consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{2})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $4$ 4.0.18432.1 $$\Z/4\Z$$ Not in database $8$ 8.4.1358954496.2 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.1358954496.9 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.5435817984.5 $$\Z/8\Z$$ Not in database $8$ 8.0.5435817984.4 $$\Z/8\Z$$ Not in database $8$ 8.2.2972033482752.8 $$\Z/6\Z$$ Not in database $16$ 16.0.1846757322198614016.5 $$\Z/4\Z \times \Z/4\Z$$ Not in database $16$ 16.0.118192468620711297024.13 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.