Properties

Label 21443a
Number of curves $1$
Conductor $21443$
CM no
Rank $3$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 21443a1 has rank \(3\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(41\)\(1 + T\)
\(523\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21443a do not have complex multiplication.

Modular form 21443.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} - 4 q^{5} + q^{6} - 2 q^{7} + 3 q^{8} - 2 q^{9} + 4 q^{10} - 6 q^{11} + q^{12} - 4 q^{13} + 2 q^{14} + 4 q^{15} - q^{16} + 4 q^{17} + 2 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 21443a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21443.a1 21443a1 \([1, 1, 1, -5, 6]\) \(-13997521/21443\) \(-21443\) \([]\) \(2912\) \(-0.47738\) \(\Gamma_0(N)\)-optimal