# Properties

 Label 18496u Number of curves $2$ Conductor $18496$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("18496.g1")

sage: E.isogeny_class()

## Elliptic curves in class 18496u

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
18496.g2 18496u1 [0, 1, 0, -7321, -235353]  55296 $$\Gamma_0(N)$$-optimal
18496.g1 18496u2 [0, 1, 0, -18881, 677887]  110592

## Rank

sage: E.rank()

The elliptic curves in class 18496u have rank $$0$$.

## Modular form 18496.2.a.g

sage: E.q_eigenform(10)

$$q - 2q^{3} + 4q^{5} - 4q^{7} + q^{9} - 2q^{11} - 2q^{13} - 8q^{15} + 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 