Properties

Label 18496p
Number of curves $2$
Conductor $18496$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("18496.o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 18496p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
18496.o1 18496p1 [0, -1, 0, -5009, -53647] [2] 36864 \(\Gamma_0(N)\)-optimal
18496.o2 18496p2 [0, -1, 0, 18111, -428191] [2] 73728  

Rank

sage: E.rank()
 

The elliptic curves in class 18496p have rank \(0\).

Modular form 18496.2.a.o

sage: E.q_eigenform(10)
 
\( q + 2q^{3} - 2q^{5} - 2q^{7} + q^{9} + 6q^{11} - 2q^{13} - 4q^{15} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.