Properties

Label 18496.p
Number of curves 4
Conductor 18496
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("18496.p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 18496.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
18496.p1 18496n4 [0, -1, 0, -2090433, 804591713] [2] 663552  
18496.p2 18496n3 [0, -1, 0, -1905473, 1012893665] [2] 331776  
18496.p3 18496n2 [0, -1, 0, -795713, -272874271] [2] 221184  
18496.p4 18496n1 [0, -1, 0, -55873, -3128607] [2] 110592 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 18496.p have rank \(0\).

Modular form 18496.2.a.p

sage: E.q_eigenform(10)
 
\( q + 2q^{3} - 4q^{7} + q^{9} - 6q^{11} - 2q^{13} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.