Properties

 Label 18496.n Number of curves $2$ Conductor $18496$ CM -4 Rank $0$ Graph

Related objects

Show commands for: SageMath
sage: E = EllipticCurve("18496.n1")

sage: E.isogeny_class()

Elliptic curves in class 18496.n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
18496.n1 18496k2 [0, 0, 0, -68, 0] [2] 4096
18496.n2 18496k1 [0, 0, 0, 17, 0] [2] 2048 $$\Gamma_0(N)$$-optimal

Rank

sage: E.rank()

The elliptic curves in class 18496.n have rank $$0$$.

Modular form 18496.2.a.n

sage: E.q_eigenform(10)

$$q + 4q^{5} - 3q^{9} + 6q^{13} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.