Properties

Label 18496.b
Number of curves $2$
Conductor $18496$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("18496.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 18496.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
18496.b1 18496s2 [0, 1, 0, -425793, 106715455] [2] 139264  
18496.b2 18496s1 [0, 1, 0, -32753, 830479] [2] 69632 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 18496.b have rank \(0\).

Modular form 18496.2.a.b

sage: E.q_eigenform(10)
 
\( q - 2q^{3} - 2q^{7} + q^{9} + 2q^{11} + 2q^{13} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.