Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, 0, 1, -6924, 221760]); // or
magma: E := EllipticCurve("171b3");
sage: E = EllipticCurve([0, 0, 1, -6924, 221760]) # or
sage: E = EllipticCurve("171b3")
gp: E = ellinit([0, 0, 1, -6924, 221760]) \\ or
gp: E = ellinit("171b3")

$$y^2 + y = x^{3} - 6924 x + 221760$$

Mordell-Weil group structure

$$\Z\times \Z/{3}\Z$$

Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

 $$P$$ = $$\left(62, 175\right)$$ $$\hat{h}(P)$$ ≈ 2.03370181943

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

$$\left(48, 0\right)$$

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

$$\left(48, 0\right)$$, $$\left(62, 175\right)$$

Note: only one of each pair $\pm P$ is listed.

Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E) Conductor: $$171$$ = $$3^{2} \cdot 19$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$-13851$$ = $$-1 \cdot 3^{6} \cdot 19$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$-\frac{50357871050752}{19}$$ = $$-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$1$$ magma: Regulator(E); sage: E.regulator() Regulator: $$2.03370181943$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega Real period: $$2.38277790333$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$2$$  = $$2\cdot1$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E) Torsion order: $$3$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form171.2.a.b

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - 2q^{4} - 3q^{5} - q^{7} - 3q^{11} - 4q^{13} + 4q^{16} + 3q^{17} + q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 magma: ModularDegree(E); sage: E.modular_degree() Modular degree: 72 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar/factorial(ar)

$$L'(E,1)$$ ≈ $$1.07685772384$$

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$I_0^{*}$$ Additive -1 2 6 0
$$19$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ B.1.1

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ss add ordinary ordinary ordinary ordinary ordinary split ss ordinary ordinary ordinary ordinary ordinary ordinary 2,5 - 1 1 1 1 1 2 1,1 1 1 1 1 1 1 0,0 - 0 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3 and 9.
Its isogeny class 171b consists of 3 curves linked by isogenies of degrees dividing 9.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.29241.2 $$\Z/9\Z$$ Not in database
3.1.76.1 $$\Z/6\Z$$ Not in database
6 6.0.3518667.2 $$\Z/3\Z \times \Z/3\Z$$ Not in database
6.0.7105563.2 $$\Z/9\Z$$ Not in database
6.0.109744.2 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.