# Properties

 Label 17.a Number of curves 4 Conductor 17 CM no Rank 0 Graph # Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("17.a1")
sage: E.isogeny_class()

## Elliptic curves in class 17.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
17.a1 17a3 [1, -1, 1, -91, -310] 2 4
17.a2 17a2 [1, -1, 1, -6, -4] 4 2
17.a3 17a1 [1, -1, 1, -1, -14] 4 1 $$\Gamma_0(N)$$-optimal
17.a4 17a4 [1, -1, 1, -1, 0] 4 4

## Rank

sage: E.rank()

The elliptic curves in class 17.a have rank $$0$$.

## Modular form17.2.a.a

sage: E.q_eigenform(10)
$$q - q^{2} - q^{4} - 2q^{5} + 4q^{7} + 3q^{8} - 3q^{9} + 2q^{10} - 2q^{13} - 4q^{14} - q^{16} + q^{17} + 3q^{18} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 