Properties

Label 16830.k
Number of curves $2$
Conductor $16830$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 16830.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16830.k1 16830i2 \([1, -1, 0, -46185, 3831821]\) \(553529221679043/11190080\) \(220254344640\) \([2]\) \(46080\) \(1.2967\)  
16830.k2 16830i1 \([1, -1, 0, -2985, 56141]\) \(149467669443/19148800\) \(376905830400\) \([2]\) \(23040\) \(0.95013\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 16830.k have rank \(1\).

Complex multiplication

The elliptic curves in class 16830.k do not have complex multiplication.

Modular form 16830.2.a.k

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + q^{11} + q^{16} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.