Show commands for:
SageMath
sage: E = EllipticCurve("u1")
sage: E.isogeny_class()
Elliptic curves in class 1600u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality | CM discriminant |
---|---|---|---|---|---|---|
1600.l2 | 1600u1 | [0, 0, 0, 125, 0] | [2] | 320 | \(\Gamma_0(N)\)-optimal | -4 |
1600.l1 | 1600u2 | [0, 0, 0, -500, 0] | [2] | 640 | -4 |
Rank
sage: E.rank()
The elliptic curves in class 1600u have rank \(1\).
Complex multiplication
Each elliptic curve in class 1600u has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 1600.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.