Show commands for:
SageMath

sage: E = EllipticCurve("t1")

sage: E.isogeny_class()

## Elliptic curves in class 1600t

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality | CM discriminant |
---|---|---|---|---|---|---|

1600.m2 | 1600t1 | [0, 0, 0, 5, 0] | [2] | 64 | \(\Gamma_0(N)\)-optimal | -4 |

1600.m1 | 1600t2 | [0, 0, 0, -20, 0] | [2] | 128 | -4 |

## Rank

sage: E.rank()

The elliptic curves in class 1600t have rank \(1\).

## Complex multiplication

Each elliptic curve in class 1600t has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).## Modular form 1600.2.a.t

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.