Properties

Label 1526.f
Number of curves 2
Conductor 1526
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("1526.f1")
sage: E.isogeny_class()

Elliptic curves in class 1526.f

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
1526.f1 1526e2 [1, 1, 1, -5060, -142437] 1 2000  
1526.f2 1526e1 [1, 1, 1, 50, 363] 5 400 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 1526.f have rank \(1\).

Modular form 1526.2.a.f

sage: E.q_eigenform(10)
\( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{7} + q^{8} - 2q^{9} + q^{10} - 3q^{11} - q^{12} - 6q^{13} + q^{14} - q^{15} + q^{16} - 2q^{17} - 2q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.