# Properties

 Label 1526.f Number of curves 2 Conductor 1526 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("1526.f1")
sage: E.isogeny_class()

## Elliptic curves in class 1526.f

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
1526.f1 1526e2 [1, 1, 1, -5060, -142437] 1 2000
1526.f2 1526e1 [1, 1, 1, 50, 363] 5 400 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 1526.f have rank $$1$$.

## Modular form1526.2.a.f

sage: E.q_eigenform(10)
$$q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{7} + q^{8} - 2q^{9} + q^{10} - 3q^{11} - q^{12} - 6q^{13} + q^{14} - q^{15} + q^{16} - 2q^{17} - 2q^{18} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.