Properties

 Label 1293.a Number of curves 2 Conductor 1293 CM no Rank 1 Graph Related objects

Show commands for: SageMath
sage: E = EllipticCurve("1293.a1")
sage: E.isogeny_class()

Elliptic curves in class 1293.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
1293.a1 1293e2 [0, 1, 1, -111940, -14420480] 1 16200
1293.a2 1293e1 [0, 1, 1, -6370, 193540] 5 3240 $$\Gamma_0(N)$$-optimal

Rank

sage: E.rank()

The elliptic curves in class 1293.a have rank $$1$$.

Modular form1293.2.a.a

sage: E.q_eigenform(10)
$$q - 2q^{2} + q^{3} + 2q^{4} - 4q^{5} - 2q^{6} - 2q^{7} + q^{9} + 8q^{10} + 2q^{11} + 2q^{12} + 4q^{13} + 4q^{14} - 4q^{15} - 4q^{16} - 7q^{17} - 2q^{18} + 5q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 