Properties

Label 124.a
Number of curves 2
Conductor 124
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("124.a1")
sage: E.isogeny_class()

Elliptic curves in class 124.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
124.a1 124a1 [0, 1, 0, -2, 1] 3 6 \(\Gamma_0(N)\)-optimal
124.a2 124a2 [0, 1, 0, 18, -11] 1 18  

Rank

sage: E.rank()

The elliptic curves in class 124.a have rank \(1\).

Modular form 124.2.a.a

sage: E.q_eigenform(10)
\( q - 2q^{3} - 3q^{5} - q^{7} + q^{9} - 6q^{11} + 2q^{13} + 6q^{15} + 6q^{17} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.