Learn more about

Refine search


Results (1-50 of 65 matches)

Next   Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass Coefficients Rank Torsion structure
121242.a1 121242c1 121242.a 121242c [1, 1, 0, -5613071, 5116256061] 0 []
121242.b1 121242a1 121242.b 121242a [1, 1, 0, -6052, 178468] 2 []
121242.c1 121242b1 121242.c 121242b [1, 1, 0, -55904, -10346112] 0 []
121242.d1 121242d1 121242.d 121242d [1, 1, 0, 152, -2240] 0 []
121242.e1 121242r1 121242.e 121242r [1, 0, 1, -3456610, 2433177140] 2 []
121242.f1 121242q1 121242.f 121242q [1, 0, 1, -3270, -111080] 0 []
121242.g1 121242i1 121242.g 121242i [1, 0, 1, -102127, -15286174] 1 []
121242.h1 121242f1 121242.h 121242f [1, 0, 1, -39372, 2993494] 2 [2]
121242.h2 121242f2 121242.h 121242f [1, 0, 1, -21002, 5800430] 2 [2]
121242.i1 121242j1 121242.i 121242j [1, 0, 1, 713776, -252518290] 1 []
121242.j1 121242g1 121242.j 121242g [1, 0, 1, -29153864, -60586908010] 1 []
121242.k1 121242m1 121242.k 121242m [1, 0, 1, -3580518021, -82464771413840] 0 [2]
121242.k2 121242m2 121242.k 121242m [1, 0, 1, -3574051781, -82777460674768] 0 [2]
121242.l1 121242l1 121242.l 121242l [1, 0, 1, -6536786, -14849520028] 0 []
121242.m1 121242n1 121242.m 121242n [1, 0, 1, -3391, 105752] 0 []
121242.n1 121242e1 121242.n 121242e [1, 0, 1, -388, -2686] 2 []
121242.o1 121242h2 121242.o 121242h [1, 0, 1, -355, 614] 1 [2]
121242.o2 121242h1 121242.o 121242h [1, 0, 1, 85, 86] 1 [2]
121242.p1 121242o4 121242.p 121242o [1, 0, 1, -1976780, -1068686764] 0 [2]
121242.p2 121242o3 121242.p 121242o [1, 0, 1, -1475840, 684916868] 0 [2]
121242.p3 121242o2 121242.p 121242o [1, 0, 1, -158150, -6606844] 0 [2, 2]
121242.p4 121242o1 121242.p 121242o [1, 0, 1, 37870, -804652] 0 [2]
121242.q1 121242p1 121242.q 121242p [1, 0, 1, -1431917, -659654008] 0 []
121242.r1 121242k2 121242.r 121242k [1, 0, 1, -223369, 40574444] 1 [2]
121242.r2 121242k1 121242.r 121242k [1, 0, 1, -10409, 963884] 1 [2]
121242.s1 121242bc1 121242.s 121242bc [1, 1, 1, -3442392, 1648575897] 0 []
121242.t1 121242x2 121242.t 121242x [1, 1, 1, -922809, -336911409] 1 [2]
121242.t2 121242x1 121242.t 121242x [1, 1, 1, -114529, 6769247] 1 [2]
121242.u1 121242w4 121242.u 121242w [1, 1, 1, -10346289, 12804977967] 1 [2]
121242.u2 121242w3 121242.u 121242w [1, 1, 1, -859889, 56665775] 1 [2]
121242.u3 121242w2 121242.u 121242w [1, 1, 1, -646929, 199689711] 1 [2, 2]
121242.u4 121242w1 121242.u 121242w [1, 1, 1, -27409, 5160431] 1 [4]
121242.v1 121242ba2 121242.v 121242ba [1, 1, 1, -84763, -9533083] 0 [2]
121242.v2 121242ba1 121242.v 121242ba [1, 1, 1, -4903, -173491] 0 [2]
121242.w1 121242s2 121242.w 121242s [1, 1, 1, -104123, 12887975] 1 [2]
121242.w2 121242s1 121242.w 121242s [1, 1, 1, -6113, 225083] 1 [2]
121242.x1 121242bb1 121242.x 121242bb [1, 1, 1, -66008, -6555031] 0 []
121242.y1 121242u2 121242.y 121242u [1, 1, 1, -33732443, 75394358777] 1 [2]
121242.y2 121242u1 121242.y 121242u [1, 1, 1, -2107883, 1177841369] 1 [2]
121242.z1 121242t1 121242.z 121242t [1, 1, 1, -10508913, -13116857841] 1 []
121242.ba1 121242v1 121242.ba 121242v [1, 1, 1, -23295, -1378167] 1 []
121242.bb1 121242z1 121242.bb 121242z [1, 1, 1, 68181, -2150631] 1 []
121242.bc1 121242y1 121242.bc 121242y [1, 1, 1, -24384, -1475451] 1 []
121242.bd1 121242bd1 121242.bd 121242bd [1, 1, 1, 18329, 3073181] 0 []
121242.be1 121242br1 121242.be 121242br [1, 0, 0, -10227, 202401] 1 []
121242.bf1 121242bi1 121242.bf 121242bi [1, 0, 0, -4763954, -3989104800] 0 [2]
121242.bf2 121242bi2 121242.bf 121242bi [1, 0, 0, -2541184, -7722913846] 0 [2]
121242.bg1 121242bg1 121242.bg 121242bg [1, 0, 0, -844, 11408] 1 []
121242.bh1 121242be1 121242.bh 121242be [1, 0, 0, -240941, 45497937] 1 []
121242.bi1 121242bo1 121242.bi 121242bo [1, 0, 0, 5899, 190257] 1 []
Next   Download to