Properties

Label 121.a
Number of curves 2
Conductor 121
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("121.a1")
sage: E.isogeny_class()

Elliptic curves in class 121.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
121.a1 121a2 [1, 1, 1, -305, 7888] 1 66  
121.a2 121a1 [1, 1, 1, -30, -76] 1 6 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 121.a have rank \(0\).

Modular form 121.2.a.a

sage: E.q_eigenform(10)
\( q - q^{2} + 2q^{3} - q^{4} + q^{5} - 2q^{6} + 2q^{7} + 3q^{8} + q^{9} - q^{10} - 2q^{12} - q^{13} - 2q^{14} + 2q^{15} - q^{16} + 5q^{17} - q^{18} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.