Curve |
Isogeny class |
|
LMFDB label |
Cremona label |
LMFDB label |
Cremona label |
Weierstrass coefficients |
Rank |
Torsion structure |
1200.a1 |
1200n1
|
1200.a |
1200n
|
$[0, -1, 0, -333, -2088]$ |
$1$ |
$[2]$ |
1200.a2 |
1200n2
|
1200.a |
1200n
|
$[0, -1, 0, 292, -9588]$ |
$1$ |
$[2]$ |
1200.b1 |
1200c1
|
1200.b |
1200c
|
$[0, -1, 0, 167, 37]$ |
$0$ |
trivial |
1200.c1 |
1200k2
|
1200.c |
1200k
|
$[0, -1, 0, -3333, 77037]$ |
$0$ |
trivial |
1200.c2 |
1200k1
|
1200.c |
1200k
|
$[0, -1, 0, 27, -243]$ |
$0$ |
trivial |
1200.d1 |
1200a5
|
1200.d |
1200a
|
$[0, -1, 0, -9608, 365712]$ |
$1$ |
$[2]$ |
1200.d2 |
1200a3
|
1200.d |
1200a
|
$[0, -1, 0, -1608, -24288]$ |
$1$ |
$[2]$ |
1200.d3 |
1200a4
|
1200.d |
1200a
|
$[0, -1, 0, -608, 5712]$ |
$1$ |
$[2, 2]$ |
1200.d4 |
1200a2
|
1200.d |
1200a
|
$[0, -1, 0, -108, -288]$ |
$1$ |
$[2, 2]$ |
1200.d5 |
1200a1
|
1200.d |
1200a
|
$[0, -1, 0, 17, -38]$ |
$1$ |
$[2]$ |
1200.d6 |
1200a6
|
1200.d |
1200a
|
$[0, -1, 0, 392, 21712]$ |
$1$ |
$[2]$ |
1200.e1 |
1200j7
|
1200.e |
1200j
|
$[0, -1, 0, -864008, 309406512]$ |
$0$ |
$[4]$ |
1200.e2 |
1200j5
|
1200.e |
1200j
|
$[0, -1, 0, -54008, 4846512]$ |
$0$ |
$[2, 2]$ |
1200.e3 |
1200j8
|
1200.e |
1200j
|
$[0, -1, 0, -44008, 6686512]$ |
$0$ |
$[2]$ |
1200.e4 |
1200j3
|
1200.e |
1200j
|
$[0, -1, 0, -32008, -2193488]$ |
$0$ |
$[2]$ |
1200.e5 |
1200j4
|
1200.e |
1200j
|
$[0, -1, 0, -4008, 46512]$ |
$0$ |
$[2, 2]$ |
1200.e6 |
1200j2
|
1200.e |
1200j
|
$[0, -1, 0, -2008, -33488]$ |
$0$ |
$[2, 2]$ |
1200.e7 |
1200j1
|
1200.e |
1200j
|
$[0, -1, 0, -8, -1488]$ |
$0$ |
$[2]$ |
1200.e8 |
1200j6
|
1200.e |
1200j
|
$[0, -1, 0, 13992, 334512]$ |
$0$ |
$[2]$ |
1200.f1 |
1200l2
|
1200.f |
1200l
|
$[0, -1, 0, -30333, 2043537]$ |
$1$ |
trivial |
1200.f2 |
1200l1
|
1200.f |
1200l
|
$[0, -1, 0, -333, 3537]$ |
$1$ |
trivial |
1200.g1 |
1200m4
|
1200.g |
1200m
|
$[0, -1, 0, -13248, -580608]$ |
$1$ |
$[2]$ |
1200.g2 |
1200m2
|
1200.g |
1200m
|
$[0, -1, 0, -848, 9792]$ |
$1$ |
$[2]$ |
1200.g3 |
1200m3
|
1200.g |
1200m
|
$[0, -1, 0, -448, -17408]$ |
$1$ |
$[2]$ |
1200.g4 |
1200m1
|
1200.g |
1200m
|
$[0, -1, 0, -48, 192]$ |
$1$ |
$[2]$ |
1200.h1 |
1200b2
|
1200.h |
1200b
|
$[0, -1, 0, -4208, 66912]$ |
$0$ |
$[2]$ |
1200.h2 |
1200b1
|
1200.h |
1200b
|
$[0, -1, 0, 792, 6912]$ |
$0$ |
$[2]$ |
1200.i1 |
1200d1
|
1200.i |
1200d
|
$[0, -1, 0, -233, -1563]$ |
$0$ |
trivial |
1200.j1 |
1200h1
|
1200.j |
1200h
|
$[0, 1, 0, -5833, -207037]$ |
$0$ |
trivial |
1200.k1 |
1200p8
|
1200.k |
1200p
|
$[0, 1, 0, -2133408, 1198675188]$ |
$1$ |
$[4]$ |
1200.k2 |
1200p7
|
1200.k |
1200p
|
$[0, 1, 0, -181408, 3987188]$ |
$1$ |
$[2]$ |
1200.k3 |
1200p6
|
1200.k |
1200p
|
$[0, 1, 0, -133408, 18675188]$ |
$1$ |
$[2, 2]$ |
1200.k4 |
1200p4
|
1200.k |
1200p
|
$[0, 1, 0, -115408, -15128812]$ |
$1$ |
$[2]$ |
1200.k5 |
1200p5
|
1200.k |
1200p
|
$[0, 1, 0, -27408, 1495188]$ |
$1$ |
$[4]$ |
1200.k6 |
1200p2
|
1200.k |
1200p
|
$[0, 1, 0, -7408, -224812]$ |
$1$ |
$[2, 2]$ |
1200.k7 |
1200p3
|
1200.k |
1200p
|
$[0, 1, 0, -5408, 499188]$ |
$1$ |
$[2]$ |
1200.k8 |
1200p1
|
1200.k |
1200p
|
$[0, 1, 0, 592, -16812]$ |
$1$ |
$[2]$ |
1200.l1 |
1200i2
|
1200.l |
1200i
|
$[0, 1, 0, -168, 468]$ |
$1$ |
$[2]$ |
1200.l2 |
1200i1
|
1200.l |
1200i
|
$[0, 1, 0, 32, 68]$ |
$1$ |
$[2]$ |
1200.m1 |
1200q4
|
1200.m |
1200q
|
$[0, 1, 0, -331208, -73238412]$ |
$0$ |
$[2]$ |
1200.m2 |
1200q2
|
1200.m |
1200q
|
$[0, 1, 0, -21208, 1181588]$ |
$0$ |
$[2]$ |
1200.m3 |
1200q3
|
1200.m |
1200q
|
$[0, 1, 0, -11208, -2198412]$ |
$0$ |
$[2]$ |
1200.m4 |
1200q1
|
1200.m |
1200q
|
$[0, 1, 0, -1208, 21588]$ |
$0$ |
$[2]$ |
1200.n1 |
1200o2
|
1200.n |
1200o
|
$[0, 1, 0, -1213, 15863]$ |
$1$ |
trivial |
1200.n2 |
1200o1
|
1200.n |
1200o
|
$[0, 1, 0, -13, 23]$ |
$1$ |
trivial |
1200.o1 |
1200e5
|
1200.o |
1200e
|
$[0, 1, 0, -80008, 8683988]$ |
$0$ |
$[2]$ |
1200.o2 |
1200e3
|
1200.o |
1200e
|
$[0, 1, 0, -5008, 133988]$ |
$0$ |
$[2, 2]$ |
1200.o3 |
1200e6
|
1200.o |
1200e
|
$[0, 1, 0, -2008, 295988]$ |
$0$ |
$[2]$ |
1200.o4 |
1200e2
|
1200.o |
1200e
|
$[0, 1, 0, -508, -1012]$ |
$0$ |
$[2, 2]$ |
1200.o5 |
1200e1
|
1200.o |
1200e
|
$[0, 1, 0, -383, -3012]$ |
$0$ |
$[2]$ |