Properties

Label 118354.b
Number of curves 4
Conductor 118354
CM no
Rank 2
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("118354.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 118354.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
118354.b1 118354e4 [1, 0, 1, -393426, 65602682] [2] 2505600  
118354.b2 118354e3 [1, 0, 1, -358616, 82617810] [2] 1252800  
118354.b3 118354e2 [1, 0, 1, -149756, -22313454] [2] 835200  
118354.b4 118354e1 [1, 0, 1, -10516, -257838] [2] 417600 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 118354.b have rank \(2\).

Modular form 118354.2.a.b

sage: E.q_eigenform(10)
 
\( q - q^{2} - 2q^{3} + q^{4} + 2q^{6} - 4q^{7} - q^{8} + q^{9} - 6q^{11} - 2q^{12} - 2q^{13} + 4q^{14} + q^{16} - q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.