Properties

Label 1155.c2
Conductor 1155
Discriminant -16987307596875
j-invariant \( -\frac{79028701534867456}{16987307596875} \)
CM no
Rank 1
Torsion Structure \(\Z/{5}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, 1, 1, -8940, 378056]); // or
magma: E := EllipticCurve("1155n1");
sage: E = EllipticCurve([0, 1, 1, -8940, 378056]) # or
sage: E = EllipticCurve("1155n1")
gp: E = ellinit([0, 1, 1, -8940, 378056]) \\ or
gp: E = ellinit("1155n1")

\( y^2 + y = x^{3} + x^{2} - 8940 x + 378056 \)

Mordell-Weil group structure

\(\Z\times \Z/{5}\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

\(P\) =  \( \left(-72, 808\right) \)
\(\hat{h}(P)\) ≈  0.173250195652

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

\( \left(-30, 787\right) \)

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

\( \left(-105, 412\right) \), \( \left(-72, 808\right) \), \( \left(-30, 787\right) \), \( \left(5, 577\right) \), \( \left(33, 346\right) \), \( \left(45, 262\right) \), \( \left(60, 247\right) \), \( \left(75, 367\right) \), \( \left(159, 1732\right) \), \( \left(180, 2152\right) \), \( \left(320, 5512\right) \), \( \left(390, 7507\right) \), \( \left(1050, 33907\right) \), \( \left(1545, 60637\right) \), \( \left(33885, 6237577\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
Conductor: \( 1155 \)  =  \(3 \cdot 5 \cdot 7 \cdot 11\)
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
Discriminant: \(-16987307596875 \)  =  \(-1 \cdot 3^{5} \cdot 5^{5} \cdot 7^{5} \cdot 11^{3} \)
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
j-invariant: \( -\frac{79028701534867456}{16987307596875} \)  =  \(-1 \cdot 2^{12} \cdot 3^{-5} \cdot 5^{-5} \cdot 7^{-5} \cdot 11^{-3} \cdot 26821^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
sage: E.rank()
Rank: \(1\)
magma: Regulator(E);
sage: E.regulator()
Regulator: \(0.173250195652\)
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
Real period: \(0.663354637468\)
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
Tamagawa product: \( 375 \)  = \( 5\cdot5\cdot5\cdot3 \)
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
Torsion order: \(5\)
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 1155.2.a.c

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

\( q - 2q^{2} + q^{3} + 2q^{4} + q^{5} - 2q^{6} + q^{7} + q^{9} - 2q^{10} + q^{11} + 2q^{12} - 6q^{13} - 2q^{14} + q^{15} - 4q^{16} - 7q^{17} - 2q^{18} - 5q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

Modular degree and optimality

magma: ModularDegree(E);
sage: E.modular_degree()
6000 . This curve is \( \Gamma_0(N) \)-optimal.

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

\( L'(E,1) \) ≈ \( 1.72389481092 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(3\) \(5\) \( I_{5} \) Split multiplicative -1 1 5 5
\(5\) \(5\) \( I_{5} \) Split multiplicative -1 1 5 5
\(7\) \(5\) \( I_{5} \) Split multiplicative -1 1 5 5
\(11\) \(3\) \( I_{3} \) Split multiplicative -1 1 3 3

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(5\) B.1.1

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: \(p\)-adic regulator data only exists for primes \(p\ge5\) of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss split split split split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) 8,1 4 6 2 2 1 1 1 1 1 1 1 1 1 1
$\mu$-invariant(s) 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 1155.c consists of 2 curves linked by isogenies of degree 5.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{5}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.4620.1 \(\Z/10\Z\) Not in database
6 6.0.24652782000.1 \(\Z/2\Z \times \Z/10\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.