# Properties

 Label 1147.a2 Conductor 1147 Discriminant 66639542677 j-invariant $$\frac{2126464142970105856}{66639542677}$$ CM no Rank 1 Torsion Structure $$\Z/{5}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, -1, 1, -26790, 1696662]); // or
magma: E := EllipticCurve("1147b1");
sage: E = EllipticCurve([0, -1, 1, -26790, 1696662]) # or
sage: E = EllipticCurve("1147b1")
gp: E = ellinit([0, -1, 1, -26790, 1696662]) \\ or
gp: E = ellinit("1147b1")

$$y^2 + y = x^{3} - x^{2} - 26790 x + 1696662$$

## Mordell-Weil group structure

$$\Z\times \Z/{5}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

 $$P$$ = $$\left(117, 387\right)$$ $$\hat{h}(P)$$ ≈ 2.29508808638

## Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

$$\left(96, 18\right)$$

## Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

$$\left(96, 18\right)$$, $$\left(117, 387\right)$$, $$\left(133, 684\right)$$, $$\left(4240, 275853\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E)[1] Conductor: $$1147$$ = $$31 \cdot 37$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$66639542677$$ = $$31^{2} \cdot 37^{5}$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$\frac{2126464142970105856}{66639542677}$$ = $$2^{12} \cdot 31^{-2} \cdot 37^{-5} \cdot 179^{3} \cdot 449^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$1$$ magma: Regulator(E); sage: E.regulator() Regulator: $$2.29508808638$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega[1] Real period: $$1.02619435686$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$10$$  = $$2\cdot5$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E)[1] Torsion order: $$5$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form1147.2.a.a

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - 2q^{2} - q^{3} + 2q^{4} - 4q^{5} + 2q^{6} + 3q^{7} - 2q^{9} + 8q^{10} - 3q^{11} - 2q^{12} + 4q^{13} - 6q^{14} + 4q^{15} - 4q^{16} - 2q^{17} + 4q^{18} + O(q^{20})$$

 magma: ModularDegree(E); sage: E.modular_degree() Modular degree: 3920 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$0.942082577095$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$31$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$37$$ $$5$$ $$I_{5}$$ Split multiplicative -1 1 5 5

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$5$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ss ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary ss split split ordinary ordinary ordinary 8,9 3 5 1 1 1 1 1,1 1 1,1 2 4 1 1 1 0,0 0 0 0 0 0 0 0,0 0 0,0 0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 5.
Its isogeny class 1147.a consists of 2 curves linked by isogenies of degree 5.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{5}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.148.1 $$\Z/10\Z$$ Not in database
6 6.6.810448.1 $$\Z/2\Z \times \Z/10\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.