# Properties

 Label 110466.bi Number of curves 4 Conductor 110466 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("110466.bi1")

sage: E.isogeny_class()

## Elliptic curves in class 110466.bi

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
110466.bi1 110466bp4 [1, -1, 1, -367205, -59092581] [2] 1990656
110466.bi2 110466bp3 [1, -1, 1, -334715, -74440857] [2] 995328
110466.bi3 110466bp2 [1, -1, 1, -139775, 20144031] [2] 663552
110466.bi4 110466bp1 [1, -1, 1, -9815, 234159] [2] 331776 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 110466.bi have rank $$1$$.

## Modular form 110466.2.a.bi

sage: E.q_eigenform(10)

$$q + q^{2} + q^{4} - 4q^{7} + q^{8} - 6q^{11} - 2q^{13} - 4q^{14} + q^{16} + q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.