Properties

Label 1008.a
Number of curves 2
Conductor 1008
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("1008.a1")
sage: E.isogeny_class()

Elliptic curves in class 1008.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
1008.a1 1008m2 [0, 0, 0, -327, -2270] 2 384  
1008.a2 1008m1 [0, 0, 0, -12, -65] 2 192 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 1008.a have rank \(0\).

Modular form 1008.2.a.a

sage: E.q_eigenform(10)
\( q - 4q^{5} + q^{7} + 2q^{11} - 6q^{13} + 4q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.