# Properties

 Label 10010.b Number of curves 2 Conductor 10010 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("10010.b1")
sage: E.isogeny_class()

## Elliptic curves in class 10010.b

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
10010.b1 10010h2 [1, 0, 1, -463, 2538] 2 7680
10010.b2 10010h1 [1, 0, 1, -183, -934] 2 3840 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 10010.b have rank $$1$$.

## Modular form None

sage: E.q_eigenform(10)
$$q - q^{2} - 2q^{3} + q^{4} + q^{5} + 2q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + q^{11} - 2q^{12} - q^{13} + q^{14} - 2q^{15} + q^{16} - 4q^{17} - q^{18} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.