# Properties

 Label 10008g1 Conductor 10008 Discriminant -1621296 j-invariant $$\frac{2048}{139}$$ CM no Rank 1 Torsion Structure $$\mathrm{Trivial}$$

# Learn more about

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 6, 61]) # or

sage: E = EllipticCurve("10008g1")

gp: E = ellinit([0, 0, 0, 6, 61]) \\ or

gp: E = ellinit("10008g1")

magma: E := EllipticCurve([0, 0, 0, 6, 61]); // or

magma: E := EllipticCurve("10008g1");

$$y^2 = x^{3} + 6 x + 61$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(2, 9\right)$$ $$\hat{h}(P)$$ ≈ 0.46288939620301167

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(-3,\pm 4)$$, $$(2,\pm 9)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$10008$$ = $$2^{3} \cdot 3^{2} \cdot 139$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-1621296$$ = $$-1 \cdot 2^{4} \cdot 3^{6} \cdot 139$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{2048}{139}$$ = $$2^{11} \cdot 139^{-1}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.462889396203$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$2.03490544621$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$4$$  = $$2\cdot2\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 10008.2.a.b

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 3q^{5} + q^{7} + 5q^{11} - 3q^{13} - 2q^{17} - 6q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1344 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$3.76774461331$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$III$$ Additive -1 3 4 0
$$3$$ $$2$$ $$I_0^{*}$$ Additive -1 2 6 0
$$139$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 139 add add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss nonsplit - - 1 1 1 1 1 1 1 1 1 1 1 1 1,1 3 - - 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 10008g consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.139.1 $$\Z/2\Z$$ Not in database
6 6.0.2685619.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.