# Properties

 Label 10005g1 Conductor 10005 Discriminant -6424789539375 j-invariant $$-\frac{33974761330806841}{6424789539375}$$ CM no Rank 1 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -6747, -248544]) # or

sage: E = EllipticCurve("10005g1")

gp: E = ellinit([1, 1, 0, -6747, -248544]) \\ or

gp: E = ellinit("10005g1")

magma: E := EllipticCurve([1, 1, 0, -6747, -248544]); // or

magma: E := EllipticCurve("10005g1");

$$y^2 + x y = x^{3} + x^{2} - 6747 x - 248544$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(\frac{2957}{16}, \frac{135171}{64}\right)$$ $$\hat{h}(P)$$ ≈ 5.337461116721288

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(96, -48\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(96, -48\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$10005$$ = $$3 \cdot 5 \cdot 23 \cdot 29$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-6424789539375$$ = $$-1 \cdot 3^{12} \cdot 5^{4} \cdot 23 \cdot 29^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{33974761330806841}{6424789539375}$$ = $$-1 \cdot 3^{-12} \cdot 5^{-4} \cdot 23^{-1} \cdot 29^{-2} \cdot 163^{3} \cdot 1987^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$5.33746111672$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.260710174121$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$16$$  = $$2\cdot2^{2}\cdot1\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 10005.2.a.l

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} + 4q^{7} - 3q^{8} + q^{9} + q^{10} + 6q^{11} + q^{12} - 6q^{13} + 4q^{14} - q^{15} - q^{16} + q^{18} - 2q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 33024 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$5.56612166841$$

## Local data

This elliptic curve is semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$I_{12}$$ Non-split multiplicative 1 1 12 12
$$5$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$23$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$29$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary nonsplit split ordinary ordinary ordinary ss ordinary split nonsplit ordinary ordinary ordinary ordinary ordinary 3 1 2 1 1 3 1,1 1 2 1 1 1 1 1 1 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 10005g consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-23})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 4.2.19343.1 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.