Properties

Label 10005d2
Conductor 10005
Discriminant 900900225
j-invariant \( \frac{5268932332201}{900900225} \)
CM no
Rank 1
Torsion Structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 1, 0, -362, 2079]); // or
magma: E := EllipticCurve("10005d2");
sage: E = EllipticCurve([1, 1, 0, -362, 2079]) # or
sage: E = EllipticCurve("10005d2")
gp: E = ellinit([1, 1, 0, -362, 2079]) \\ or
gp: E = ellinit("10005d2")

\( y^2 + x y = x^{3} + x^{2} - 362 x + 2079 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

\(P\) =  \( \left(158, 1901\right) \)
\(\hat{h}(P)\) ≈  3.18753386655

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

\( \left(14, -7\right) \), \( \left(\frac{27}{4}, -\frac{27}{8}\right) \)

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

\( \left(-22, 11\right) \), \( \left(14, -7\right) \), \( \left(158, 1901\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
Conductor: \( 10005 \)  =  \(3 \cdot 5 \cdot 23 \cdot 29\)
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
Discriminant: \(900900225 \)  =  \(3^{4} \cdot 5^{2} \cdot 23^{2} \cdot 29^{2} \)
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
j-invariant: \( \frac{5268932332201}{900900225} \)  =  \(3^{-4} \cdot 5^{-2} \cdot 23^{-2} \cdot 29^{-2} \cdot 17401^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
sage: E.rank()
Rank: \(1\)
magma: Regulator(E);
sage: E.regulator()
Regulator: \(3.18753386655\)
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
Real period: \(1.50270753192\)
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
Tamagawa product: \( 16 \)  = \( 2\cdot2\cdot2\cdot2 \)
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
Torsion order: \(4\)
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 10005.2.a.k

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

\( q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 3q^{8} + q^{9} + q^{10} + 4q^{11} + q^{12} - 2q^{13} - q^{15} - q^{16} - 6q^{17} + q^{18} + 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
sage: E.modular_degree()
Modular degree: 3840
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

\( L'(E,1) \) ≈ \( 4.78993114951 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(3\) \(2\) \( I_{4} \) Non-split multiplicative 1 1 4 4
\(5\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(23\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2
\(29\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8d.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 0 & 1 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ordinary nonsplit split ss ordinary ordinary ordinary ordinary nonsplit split ordinary ordinary ordinary ss ss
$\lambda$-invariant(s) 3 1 2 1,1 1 1 1 1 1 2 1 1 1 1,1 1,1
$\mu$-invariant(s) 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0,0 0,0

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 10005d consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{29}) \) \(\Z/2\Z \times \Z/4\Z\) Not in database
4 \(\Q(\sqrt{-29}, \sqrt{115})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
\(\Q(i, \sqrt{115})\) \(\Z/2\Z \times \Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.