Properties

Label 10005.h
Number of curves 2
Conductor 10005
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("10005.h1")
sage: E.isogeny_class()

Elliptic curves in class 10005.h

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
10005.h1 10005i2 [0, 1, 1, -2379061, -1411043480] 1 194400  
10005.h2 10005i1 [0, 1, 1, -124021, 14938111] 3 64800 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 10005.h have rank \(1\).

Modular form None

sage: E.q_eigenform(10)
\( q + q^{3} - 2q^{4} - q^{5} - q^{7} + q^{9} - 2q^{12} - 4q^{13} - q^{15} + 4q^{16} - 3q^{17} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.