Properties

Label 10005.d1
Conductor 10005
Discriminant 250125
j-invariant \( \frac{262537424941059264096001}{250125} \)
CM no
Rank 1
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 1, 1, -1334000, -593592940]); // or
magma: E := EllipticCurve("10005e3");
sage: E = EllipticCurve([1, 1, 1, -1334000, -593592940]) # or
sage: E = EllipticCurve("10005e3")
gp: E = ellinit([1, 1, 1, -1334000, -593592940]) \\ or
gp: E = ellinit("10005e3")

\( y^2 + x y + y = x^{3} + x^{2} - 1334000 x - 593592940 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

\(P\) =  \( \left(1403, 16588\right) \)
\(\hat{h}(P)\) ≈  6.56246603608

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

\( \left(-\frac{2669}{4}, \frac{2665}{8}\right) \)

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

\( \left(1403, 16588\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
Conductor: \( 10005 \)  =  \(3 \cdot 5 \cdot 23 \cdot 29\)
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
Discriminant: \(250125 \)  =  \(3 \cdot 5^{3} \cdot 23 \cdot 29 \)
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
j-invariant: \( \frac{262537424941059264096001}{250125} \)  =  \(3^{-1} \cdot 5^{-3} \cdot 11^{3} \cdot 23^{-1} \cdot 29^{-1} \cdot 47^{3} \cdot 123853^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
sage: E.rank()
Rank: \(1\)
magma: Regulator(E);
sage: E.regulator()
Regulator: \(6.56246603608\)
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
Real period: \(0.140478737522\)
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
Tamagawa product: \( 3 \)  = \( 1\cdot3\cdot1\cdot1 \)
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
Torsion order: \(2\)
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
Analytic order of Ш: \(4\) (exact)

Modular invariants

Modular form 10005.2.a.d

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

\( q - q^{2} - q^{3} - q^{4} + q^{5} + q^{6} + 3q^{8} + q^{9} - q^{10} + q^{12} + 6q^{13} - q^{15} - q^{16} + 6q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
sage: E.modular_degree()
Modular degree: 49152
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

\( L'(E,1) \) ≈ \( 2.76566083133 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(3\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1
\(5\) \(3\) \( I_{3} \) Split multiplicative -1 1 3 3
\(23\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1
\(29\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13d.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ordinary nonsplit split ss ss ordinary ordinary ordinary nonsplit split ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) 1 1 2 1,1 1,1 1 1 1 1 2 1 1 1 1 1,1
$\mu$-invariant(s) 2 0 0 0,0 0,0 0 0 0 0 0 0 0 0 0 0,0

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 10005.d consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{10005}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
\(\Q(\sqrt{-2001}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{-5}) \) \(\Z/4\Z\) Not in database
4 \(x^{4} \) \(\mathstrut -\mathstrut 200 x^{2} \) \(\mathstrut +\mathstrut 10005 \) \(\Z/8\Z\) Not in database
\(x^{4} \) \(\mathstrut +\mathstrut 1003 x^{2} \) \(\mathstrut +\mathstrut 249001 \) \(\Z/2\Z \times \Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.