# Properties

 Label 10005.d Number of curves 4 Conductor 10005 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("10005.d1")

sage: E.isogeny_class()

## Elliptic curves in class 10005.d

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
10005.d1 10005e3 [1, 1, 1, -1334000, -593592940]  49152
10005.d2 10005e2 [1, 1, 1, -83375, -9300940] [2, 2] 24576
10005.d3 10005e4 [1, 1, 1, -82750, -9446440]  49152
10005.d4 10005e1 [1, 1, 1, -5250, -144690]  12288 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 10005.d have rank $$1$$.

## Modular form 10005.2.a.d

sage: E.q_eigenform(10)

$$q - q^{2} - q^{3} - q^{4} + q^{5} + q^{6} + 3q^{8} + q^{9} - q^{10} + q^{12} + 6q^{13} - q^{15} - q^{16} + 6q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 