# Properties

 Label 100011c1 Conductor $100011$ Discriminant $-1.060\times 10^{23}$ j-invariant $$\frac{81228381874428716689043456}{106013477073021185065059}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 1, 9022524, -11690123677]) # or

sage: E = EllipticCurve("100011c1")

gp: E = ellinit([0, -1, 1, 9022524, -11690123677]) \\ or

gp: E = ellinit("100011c1")

magma: E := EllipticCurve([0, -1, 1, 9022524, -11690123677]); // or

magma: E := EllipticCurve("100011c1");

$$y^2 + y = x^{3} - x^{2} + 9022524 x - 11690123677$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(\frac{1837021}{900}, \frac{3331586269}{27000}\right)$$ $$\hat{h}(P)$$ ≈ $4.521742922990336$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$100011$$ = $$3 \cdot 17 \cdot 37 \cdot 53$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-106013477073021185065059$$ = $$-1 \cdot 3^{7} \cdot 17^{3} \cdot 37^{8} \cdot 53^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{81228381874428716689043456}{106013477073021185065059}$$ = $$2^{12} \cdot 3^{-7} \cdot 17^{-3} \cdot 19^{3} \cdot 37^{-8} \cdot 53^{-2} \cdot 229^{3} \cdot 6221^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$4.52174292299$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.0565182259796$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$48$$  = $$1\cdot3\cdot2^{3}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 100011.2.a.e

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + 2q^{2} - q^{3} + 2q^{4} - q^{5} - 2q^{6} + 2q^{7} + q^{9} - 2q^{10} + 3q^{11} - 2q^{12} + 3q^{13} + 4q^{14} + q^{15} - 4q^{16} + q^{17} + 2q^{18} + q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 10765440 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$12.2669226405$$

## Local data

This elliptic curve is semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$1$$ $$I_{7}$$ Non-split multiplicative 1 1 7 7
$$17$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$37$$ $$8$$ $$I_{8}$$ Split multiplicative -1 1 8 8
$$53$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 ss nonsplit ordinary ordinary ordinary ordinary split ordinary ordinary ordinary ordinary split ordinary ordinary ordinary nonsplit 2,17 3 1 1 1 1 2 1 1 1 1 2 1 3 1 1 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 100011c consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.204.1 $$\Z/2\Z$$ Not in database
$6$ 6.0.2122416.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.