# Properties

 Label 100005c1 Conductor 100005 Discriminant 1232397230480685 j-invariant $$\frac{1717659606564845572096}{1232397230480685}$$ CM no Rank 0 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, 1, 1, -249500, 47855441]); // or
magma: E := EllipticCurve("100005c1");
sage: E = EllipticCurve([0, 1, 1, -249500, 47855441]) # or
sage: E = EllipticCurve("100005c1")
gp: E = ellinit([0, 1, 1, -249500, 47855441]) \\ or
gp: E = ellinit("100005c1")

$$y^2 + y = x^{3} + x^{2} - 249500 x + 47855441$$

Trivial

## Integral points

magma: IntegralPoints(E);
sage: E.integral_points()
None

## Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E)[1] Conductor: $$100005$$ = $$3 \cdot 5 \cdot 59 \cdot 113$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$1232397230480685$$ = $$3^{3} \cdot 5 \cdot 59^{5} \cdot 113^{2}$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$\frac{1717659606564845572096}{1232397230480685}$$ = $$2^{12} \cdot 3^{-3} \cdot 5^{-1} \cdot 13^{6} \cdot 43^{3} \cdot 59^{-5} \cdot 103^{3} \cdot 113^{-2}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$0$$ magma: Regulator(E); sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega[1] Real period: $$0.480988047598$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$30$$  = $$3\cdot1\cdot5\cdot2$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 100005.2.a.d

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + 2q^{2} + q^{3} + 2q^{4} + q^{5} + 2q^{6} + 4q^{7} + q^{9} + 2q^{10} + 3q^{11} + 2q^{12} + 7q^{13} + 8q^{14} + q^{15} - 4q^{16} + 3q^{17} + 2q^{18} - 3q^{19} + O(q^{20})$$

 magma: ModularDegree(E); sage: E.modular_degree() Modular degree: 1539840 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$14.4296414279$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$5$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$59$$ $$5$$ $$I_{5}$$ Split multiplicative -1 1 5 5
$$113$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 59 113 ss split split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary ordinary split nonsplit 4,11 1 3 0 0 0 0 0 0 0 0 0 0,0 0 0 1 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 100005c consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.3540.1 $$\Z/2\Z$$ Not in database
6 6.6.11090466000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.