Properties

 Label 100.a Number of curves 4 Conductor 100 CM no Rank 0 Graph Related objects

Show commands for: SageMath
sage: E = EllipticCurve("100.a1")
sage: E.isogeny_class()

Elliptic curves in class 100.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
100.a1 100a3 [0, -1, 0, -1033, -12438] 2 36
100.a2 100a4 [0, -1, 0, -908, -15688] 2 72
100.a3 100a1 [0, -1, 0, -33, 62] 2 12 $$\Gamma_0(N)$$-optimal
100.a4 100a2 [0, -1, 0, 92, 312] 2 24

Rank

sage: E.rank()

The elliptic curves in class 100.a have rank $$0$$.

Modular form100.2.a.a

sage: E.q_eigenform(10)
$$q + 2q^{3} - 2q^{7} + q^{9} - 2q^{13} + 6q^{17} - 4q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 