Properties

Label 6.6.485125.1-9.1-a1
Base field 6.6.485125.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-3a^{2}+1\right){x}{y}+\left(a^{5}-a^{4}-4a^{3}+3a^{2}+2a-1\right){y}={x}^{3}+\left(-a^{5}+2a^{4}+4a^{3}-6a^{2}-3a+1\right){x}^{2}+\left(a^{5}-8a^{4}+51a^{3}-29a^{2}-63a+5\right){x}+120a^{5}-261a^{4}-176a^{3}+398a^{2}+152a-73\)
sage: E = EllipticCurve([K([1,0,-3,0,1,0]),K([1,-3,-6,4,2,-1]),K([-1,2,3,-4,-1,1]),K([5,-63,-29,51,-8,1]),K([-73,152,398,-176,-261,120])])
 
gp: E = ellinit([Polrev([1,0,-3,0,1,0]),Polrev([1,-3,-6,4,2,-1]),Polrev([-1,2,3,-4,-1,1]),Polrev([5,-63,-29,51,-8,1]),Polrev([-73,152,398,-176,-261,120])], K);
 
magma: E := EllipticCurve([K![1,0,-3,0,1,0],K![1,-3,-6,4,2,-1],K![-1,2,3,-4,-1,1],K![5,-63,-29,51,-8,1],K![-73,152,398,-176,-261,120]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2)\) = \((a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((373a^5-134a^4-1806a^3+34a^2+1898a+342)\) = \((a^2-2)^{18}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -150094635296999121 \) = \(-9^{18}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{19534593968251450184}{387420489} a^{5} - \frac{25732253879599264147}{387420489} a^{4} - \frac{95706620059011517651}{387420489} a^{3} + \frac{90934603429118494397}{387420489} a^{2} + \frac{101153218100845110134}{387420489} a - \frac{1059714138202501808}{14348907} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{7}{4} a^{2} + 3 a + \frac{13}{4} : \frac{13}{8} a^{5} + \frac{1}{8} a^{4} - \frac{15}{2} a^{3} + \frac{5}{2} a^{2} + \frac{47}{8} a - \frac{23}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1355.3227225432099638829848010340318135 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.972940 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(9\) \(2\) \(I_{18}\) Non-split multiplicative \(1\) \(1\) \(18\) \(18\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.