Properties

Label 6.6.485125.1-49.1-e4
Base field 6.6.485125.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-5a^{3}+4a\right){x}{y}+\left(-a^{5}+a^{4}+5a^{3}-3a^{2}-5a+1\right){y}={x}^{3}+\left(-a^{5}+a^{4}+6a^{3}-4a^{2}-7a+1\right){x}^{2}+\left(-67a^{5}+147a^{4}+136a^{3}-479a^{2}+248a-44\right){x}-611a^{5}+1384a^{4}+1064a^{3}-4447a^{2}+2879a-492\)
sage: E = EllipticCurve([K([0,4,0,-5,0,1]),K([1,-7,-4,6,1,-1]),K([1,-5,-3,5,1,-1]),K([-44,248,-479,136,147,-67]),K([-492,2879,-4447,1064,1384,-611])])
 
gp: E = ellinit([Polrev([0,4,0,-5,0,1]),Polrev([1,-7,-4,6,1,-1]),Polrev([1,-5,-3,5,1,-1]),Polrev([-44,248,-479,136,147,-67]),Polrev([-492,2879,-4447,1064,1384,-611])], K);
 
magma: E := EllipticCurve([K![0,4,0,-5,0,1],K![1,-7,-4,6,1,-1],K![1,-5,-3,5,1,-1],K![-44,248,-479,136,147,-67],K![-492,2879,-4447,1064,1384,-611]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+3a^4+10a^3-12a^2-11a+6)\) = \((-2a^5+3a^4+10a^3-12a^2-11a+6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-11a^5+15a^4+58a^3-65a^2-83a+47)\) = \((-2a^5+3a^4+10a^3-12a^2-11a+6)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 282475249 \) = \(49^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1868725201871035180068}{2401} a^{5} - \frac{49786647890889419082432}{16807} a^{4} + \frac{37590650528569269107756}{16807} a^{3} + \frac{36759694234274090980991}{16807} a^{2} - \frac{40226057957192491342390}{16807} a + \frac{7243098992357634858294}{16807} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.6545174006754406607185451264073219308 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.48465 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+3a^4+10a^3-12a^2-11a+6)\) \(49\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.4[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 49.1-e consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.