Properties

Label 6.6.485125.1-41.1-b4
Base field 6.6.485125.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-5a^{3}+4a+1\right){x}{y}+\left(a^{3}-2a-1\right){y}={x}^{3}+\left(-2a^{5}+3a^{4}+8a^{3}-9a^{2}-5a+2\right){x}^{2}+\left(-22a^{5}+28a^{4}+107a^{3}-89a^{2}-118a+18\right){x}-82a^{5}+112a^{4}+399a^{3}-397a^{2}-420a+138\)
sage: E = EllipticCurve([K([1,4,0,-5,0,1]),K([2,-5,-9,8,3,-2]),K([-1,-2,0,1,0,0]),K([18,-118,-89,107,28,-22]),K([138,-420,-397,399,112,-82])])
 
gp: E = ellinit([Polrev([1,4,0,-5,0,1]),Polrev([2,-5,-9,8,3,-2]),Polrev([-1,-2,0,1,0,0]),Polrev([18,-118,-89,107,28,-22]),Polrev([138,-420,-397,399,112,-82])], K);
 
magma: E := EllipticCurve([K![1,4,0,-5,0,1],K![2,-5,-9,8,3,-2],K![-1,-2,0,1,0,0],K![18,-118,-89,107,28,-22],K![138,-420,-397,399,112,-82]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-5a^3+5a)\) = \((a^5-5a^3+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^5-2a^4-12a^3+9a^2+16a-8)\) = \((a^5-5a^3+5a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1681 \) = \(-41^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{247312191821393399}{1681} a^{5} + \frac{434315726526349312}{1681} a^{4} + \frac{1095159425055437131}{1681} a^{3} - \frac{1711435916724291643}{1681} a^{2} - \frac{911968936218596275}{1681} a + \frac{1014171519640582545}{1681} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a^{5} + 3 a^{4} + 15 a^{3} - 11 a^{2} - 15 a + 6 : 4 a^{5} - 4 a^{4} - 20 a^{3} + 14 a^{2} + 18 a - 6 : 1\right)$
Height \(0.026734693097681236172118651495903639808\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{9}{4} a^{5} + \frac{11}{4} a^{4} + \frac{23}{2} a^{3} - 11 a^{2} - \frac{51}{4} a + \frac{11}{2} : 3 a^{5} - \frac{13}{4} a^{4} - \frac{61}{4} a^{3} + 13 a^{2} + \frac{123}{8} a - \frac{43}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.026734693097681236172118651495903639808 \)
Period: \( 19378.268634232349756069043160243624743 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.23144 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-5a^3+5a)\) \(41\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 41.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.