Properties

Label 6.6.485125.1-31.1-a7
Base field 6.6.485125.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+3a^{4}+9a^{3}-10a^{2}-8a+3\right){x}{y}={x}^{3}+\left(-a^{5}+5a^{3}+a^{2}-5a-1\right){x}^{2}-4{x}-2a^{5}+8a^{4}+9a^{3}-33a^{2}-9a+12\)
sage: E = EllipticCurve([K([3,-8,-10,9,3,-2]),K([-1,-5,1,5,0,-1]),K([0,0,0,0,0,0]),K([-4,0,0,0,0,0]),K([12,-9,-33,9,8,-2])])
 
gp: E = ellinit([Polrev([3,-8,-10,9,3,-2]),Polrev([-1,-5,1,5,0,-1]),Polrev([0,0,0,0,0,0]),Polrev([-4,0,0,0,0,0]),Polrev([12,-9,-33,9,8,-2])], K);
 
magma: E := EllipticCurve([K![3,-8,-10,9,3,-2],K![-1,-5,1,5,0,-1],K![0,0,0,0,0,0],K![-4,0,0,0,0,0],K![12,-9,-33,9,8,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-3a^4-8a^3+10a^2+5a-4)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^5-5a^4-19a^3+19a^2+19a-11)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 961 \) = \(31^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{350193349920473908}{961} a^{5} + \frac{614989688312525919}{961} a^{4} + \frac{1550742937477348718}{961} a^{3} - \frac{2423388078335799313}{961} a^{2} - \frac{1291346530388574699}{961} a + \frac{1436064511168210027}{961} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-2 : -2 a^{5} + 3 a^{4} + 9 a^{3} - 10 a^{2} - 8 a + 3 : 1\right)$ $\left(2 a^{5} - a^{4} - 11 a^{3} + 4 a^{2} + 12 a - 1 : 9 a^{5} - 12 a^{4} - 46 a^{3} + 45 a^{2} + 51 a - 15 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 8206.3430774766224292553541054757555920 \)
Tamagawa product: \( 2 \)
Torsion order: \(8\)
Leading coefficient: \( 1.47276 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^5-3a^4-8a^3+10a^2+5a-4)\) \(31\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.