Properties

Label 6.6.453789.1-43.1-a1
Base field \(\Q(\zeta_{21})^+\)
Conductor norm \( 43 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -8, 8, 6, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -8, 8, 6, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{5}+a^{4}-5a^{3}-2a^{2}+6a-2\right){y}={x}^{3}+\left(a^{4}-3a^{2}-a+1\right){x}^{2}+\left(-1815a^{5}+640a^{4}+11287a^{3}-3274a^{2}-16592a+2508\right){x}+61652a^{5}-18037a^{4}-382582a^{3}+96346a^{2}+561130a-84717\)
sage: E = EllipticCurve([K([-2,1,1,0,0,0]),K([1,-1,-3,0,1,0]),K([-2,6,-2,-5,1,1]),K([2508,-16592,-3274,11287,640,-1815]),K([-84717,561130,96346,-382582,-18037,61652])])
 
gp: E = ellinit([Polrev([-2,1,1,0,0,0]),Polrev([1,-1,-3,0,1,0]),Polrev([-2,6,-2,-5,1,1]),Polrev([2508,-16592,-3274,11287,640,-1815]),Polrev([-84717,561130,96346,-382582,-18037,61652])], K);
 
magma: E := EllipticCurve([K![-2,1,1,0,0,0],K![1,-1,-3,0,1,0],K![-2,6,-2,-5,1,1],K![2508,-16592,-3274,11287,640,-1815],K![-84717,561130,96346,-382582,-18037,61652]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-3a-1)\) = \((a^3+a^2-3a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43 \) = \(43\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((379a^5-689a^4-2667a^3+3058a^2+4051a-2005)\) = \((a^3+a^2-3a-1)^{11}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 929293739471222707 \) = \(43^{11}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{122671686822496847013039511249758605577398}{929293739471222707} a^{5} + \frac{80040521603412429280297685957868481938607}{929293739471222707} a^{4} - \frac{603764956031188829103770286089077775728189}{929293739471222707} a^{3} - \frac{261677914170315830376360951082281856697755}{929293739471222707} a^{2} + \frac{548956616586298989964223373216163970685955}{929293739471222707} a - \frac{74235009600386253636048203807121847689780}{929293739471222707} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 684.81044412548372010732084404845244807 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.01658 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-3a-1)\) \(43\) \(1\) \(I_{11}\) Non-split multiplicative \(1\) \(1\) \(11\) \(11\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(11\) 11B.10.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 11.
Its isogeny class 43.1-a consists of curves linked by isogenies of degree 11.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.