Properties

Label 6.6.453789.1-41.6-d1
Base field \(\Q(\zeta_{21})^+\)
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -8, 8, 6, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -8, 8, 6, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{4}-3a^{2}+1\right){y}={x}^{3}+\left(-a^{5}+4a^{3}-2a^{2}-2a+3\right){x}^{2}+\left(-2a^{4}+2a^{3}+4a^{2}-6a+3\right){x}+a^{5}-3a^{4}+5a^{2}-4a+1\)
sage: E = EllipticCurve([K([1,-2,0,1,0,0]),K([3,-2,-2,4,0,-1]),K([1,0,-3,0,1,0]),K([3,-6,4,2,-2,0]),K([1,-4,5,0,-3,1])])
 
gp: E = ellinit([Polrev([1,-2,0,1,0,0]),Polrev([3,-2,-2,4,0,-1]),Polrev([1,0,-3,0,1,0]),Polrev([3,-6,4,2,-2,0]),Polrev([1,-4,5,0,-3,1])], K);
 
magma: E := EllipticCurve([K![1,-2,0,1,0,0],K![3,-2,-2,4,0,-1],K![1,0,-3,0,1,0],K![3,-6,4,2,-2,0],K![1,-4,5,0,-3,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5-a^4+5a^3+3a^2-5a-1)\) = \((-a^5-a^4+5a^3+3a^2-5a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+6a^3-9a+2)\) = \((-a^5-a^4+5a^3+3a^2-5a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -41 \) = \(-41\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{13444954}{41} a^{5} - \frac{11843590}{41} a^{4} - \frac{81028162}{41} a^{3} + \frac{68125115}{41} a^{2} + \frac{114760190}{41} a - \frac{87740634}{41} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 603.94057741679419555345677352454947071 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 0.896535 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5-a^4+5a^3+3a^2-5a-1)\) \(41\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 41.6-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.