Properties

Label 6.6.434581.1-71.2-d2
Base field 6.6.434581.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-2a^{4}-3a^{3}+4a^{2}\right){x}{y}+\left(a^{5}-2a^{4}-3a^{3}+3a^{2}+2a\right){y}={x}^{3}+\left(-a^{5}+a^{4}+5a^{3}-a^{2}-2a+1\right){x}^{2}+\left(124a^{5}-300a^{4}-372a^{3}+773a^{2}+203a-328\right){x}+871a^{5}-2082a^{4}-2669a^{3}+5381a^{2}+1425a-2290\)
sage: E = EllipticCurve([K([0,0,4,-3,-2,1]),K([1,-2,-1,5,1,-1]),K([0,2,3,-3,-2,1]),K([-328,203,773,-372,-300,124]),K([-2290,1425,5381,-2669,-2082,871])])
 
gp: E = ellinit([Polrev([0,0,4,-3,-2,1]),Polrev([1,-2,-1,5,1,-1]),Polrev([0,2,3,-3,-2,1]),Polrev([-328,203,773,-372,-300,124]),Polrev([-2290,1425,5381,-2669,-2082,871])], K);
 
magma: E := EllipticCurve([K![0,0,4,-3,-2,1],K![1,-2,-1,5,1,-1],K![0,2,3,-3,-2,1],K![-328,203,773,-372,-300,124],K![-2290,1425,5381,-2669,-2082,871]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a)\) = \((a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5-6a^4+17a^3+28a^2-29a-21)\) = \((a^3-3a)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 357911 \) = \(71^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{50122252711904339413}{357911} a^{5} - \frac{34440294099625178427}{357911} a^{4} - \frac{245370638319075245141}{357911} a^{3} - \frac{72252300940473968205}{357911} a^{2} + \frac{105061859160901151594}{357911} a + \frac{38046605133443070594}{357911} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 10.548715056044381825939795827323435722 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.29613 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a)\) \(71\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 71.2-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.