Properties

Label 6.6.434581.1-71.2-b1
Base field 6.6.434581.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-4a^{4}-7a^{3}+9a^{2}+3a-3\right){x}{y}+\left(a^{5}-2a^{4}-4a^{3}+5a^{2}+4a-1\right){y}={x}^{3}+\left(2a^{5}-5a^{4}-5a^{3}+11a^{2}-4\right){x}^{2}+\left(10a^{5}-30a^{4}-16a^{3}+72a^{2}-2a-32\right){x}+a^{5}+3a^{4}-24a^{3}+25a^{2}+18a-26\)
sage: E = EllipticCurve([K([-3,3,9,-7,-4,2]),K([-4,0,11,-5,-5,2]),K([-1,4,5,-4,-2,1]),K([-32,-2,72,-16,-30,10]),K([-26,18,25,-24,3,1])])
 
gp: E = ellinit([Polrev([-3,3,9,-7,-4,2]),Polrev([-4,0,11,-5,-5,2]),Polrev([-1,4,5,-4,-2,1]),Polrev([-32,-2,72,-16,-30,10]),Polrev([-26,18,25,-24,3,1])], K);
 
magma: E := EllipticCurve([K![-3,3,9,-7,-4,2],K![-4,0,11,-5,-5,2],K![-1,4,5,-4,-2,1],K![-32,-2,72,-16,-30,10],K![-26,18,25,-24,3,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a)\) = \((a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+2a^3+a^2-a+4)\) = \((a^3-3a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{58168686536343316256911}{5041} a^{5} + \frac{39830276056343603859101}{5041} a^{4} + \frac{285062017990100061908014}{5041} a^{3} + \frac{84087973968099499538051}{5041} a^{2} - \frac{122076980141719179710154}{5041} a - \frac{44225911390155224771855}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{5} + 4 a^{4} - 12 a^{2} + 3 a + 9 : -4 a^{5} + 6 a^{4} + 18 a^{3} - 10 a^{2} - 17 a - 4 : 1\right)$
Height \(0.097983788799860610502864856391415823301\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{5} - \frac{11}{4} a^{4} - \frac{11}{4} a^{3} + \frac{33}{4} a^{2} - \frac{7}{2} : \frac{5}{8} a^{5} - \frac{7}{4} a^{4} - \frac{5}{4} a^{3} + \frac{33}{8} a^{2} + \frac{3}{8} a - \frac{5}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.097983788799860610502864856391415823301 \)
Period: \( 5981.5737388344693552573314079832798314 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.66720 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a)\) \(71\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.2-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.