Properties

Label 6.6.434581.1-43.2-a2
Base field 6.6.434581.1
Conductor norm \( 43 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-4a^{4}-6a^{3}+7a^{2}+2a-1\right){x}{y}+\left(a^{5}-2a^{4}-3a^{3}+3a^{2}+a\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+1\right){x}^{2}+\left(11a^{5}-13a^{4}-46a^{3}+7a^{2}+22a+6\right){x}+28a^{5}-24a^{4}-131a^{3}-19a^{2}+61a+20\)
sage: E = EllipticCurve([K([-1,2,7,-6,-4,2]),K([1,-2,-1,1,0,0]),K([0,1,3,-3,-2,1]),K([6,22,7,-46,-13,11]),K([20,61,-19,-131,-24,28])])
 
gp: E = ellinit([Polrev([-1,2,7,-6,-4,2]),Polrev([1,-2,-1,1,0,0]),Polrev([0,1,3,-3,-2,1]),Polrev([6,22,7,-46,-13,11]),Polrev([20,61,-19,-131,-24,28])], K);
 
magma: E := EllipticCurve([K![-1,2,7,-6,-4,2],K![1,-2,-1,1,0,0],K![0,1,3,-3,-2,1],K![6,22,7,-46,-13,11],K![20,61,-19,-131,-24,28]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-3a^4-a^3+7a^2-3a-4)\) = \((a^5-3a^4-a^3+7a^2-3a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43 \) = \(43\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+8a^3-10a)\) = \((a^5-3a^4-a^3+7a^2-3a-4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1849 \) = \(43^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{134687472447907851}{1849} a^{5} - \frac{92225553082493187}{1849} a^{4} - \frac{660050709979735846}{1849} a^{3} - \frac{194702637568708198}{1849} a^{2} + \frac{282664796987933702}{1849} a + \frac{102403485435484690}{1849} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 446.03344625319121721813031344665341055 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.35320 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-a^3+7a^2-3a-4)\) \(43\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 43.2-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.