Properties

Label 6.6.434581.1-29.2-d1
Base field 6.6.434581.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+a^{2}+3a\right){x}{y}+\left(3a^{5}-6a^{4}-10a^{3}+12a^{2}+5a-2\right){y}={x}^{3}+\left(-2a^{5}+4a^{4}+7a^{3}-8a^{2}-5a+2\right){x}^{2}+\left(-a^{5}+5a^{3}+6a^{2}-2a-3\right){x}-4a^{5}+4a^{4}+18a^{3}+a^{2}-8a-3\)
sage: E = EllipticCurve([K([0,3,1,-5,-1,1]),K([2,-5,-8,7,4,-2]),K([-2,5,12,-10,-6,3]),K([-3,-2,6,5,0,-1]),K([-3,-8,1,18,4,-4])])
 
gp: E = ellinit([Polrev([0,3,1,-5,-1,1]),Polrev([2,-5,-8,7,4,-2]),Polrev([-2,5,12,-10,-6,3]),Polrev([-3,-2,6,5,0,-1]),Polrev([-3,-8,1,18,4,-4])], K);
 
magma: E := EllipticCurve([K![0,3,1,-5,-1,1],K![2,-5,-8,7,4,-2],K![-2,5,12,-10,-6,3],K![-3,-2,6,5,0,-1],K![-3,-8,1,18,4,-4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a^5-7a^4-9a^3+17a^2+3a-5)\) = \((3a^5-7a^4-9a^3+17a^2+3a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^5+7a^4+18a^3-21a^2-13a+10)\) = \((3a^5-7a^4-9a^3+17a^2+3a-5)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -24389 \) = \(-29^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2227643651}{24389} a^{5} - \frac{6600751439}{24389} a^{4} - \frac{5119963945}{24389} a^{3} + \frac{20357393301}{24389} a^{2} + \frac{411157352}{24389} a - \frac{13119189482}{24389} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{5} - 2 a^{4} - 4 a^{3} + 4 a^{2} + 5 a + 1 : -7 a^{5} + 9 a^{4} + 31 a^{3} - 8 a^{2} - 21 a - 4 : 1\right)$
Height \(0.00077652884849094157253856608855361059583\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.00077652884849094157253856608855361059583 \)
Period: \( 95834.381593173948413872543324347624020 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 2.03196 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3a^5-7a^4-9a^3+17a^2+3a-5)\) \(29\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 29.2-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.