Properties

Label 6.6.434581.1-29.1-a2
Base field 6.6.434581.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{5}-6a^{4}-10a^{3}+12a^{2}+5a-2\right){x}{y}+\left(2a^{5}-4a^{4}-6a^{3}+7a^{2}+a-1\right){y}={x}^{3}+\left(-a^{4}+2a^{3}+3a^{2}-3a-1\right){x}^{2}+\left(-25a^{5}+65a^{4}+75a^{3}-170a^{2}-65a+5\right){x}-81a^{5}+262a^{4}+173a^{3}-737a^{2}-174a+41\)
sage: E = EllipticCurve([K([-2,5,12,-10,-6,3]),K([-1,-3,3,2,-1,0]),K([-1,1,7,-6,-4,2]),K([5,-65,-170,75,65,-25]),K([41,-174,-737,173,262,-81])])
 
gp: E = ellinit([Polrev([-2,5,12,-10,-6,3]),Polrev([-1,-3,3,2,-1,0]),Polrev([-1,1,7,-6,-4,2]),Polrev([5,-65,-170,75,65,-25]),Polrev([41,-174,-737,173,262,-81])], K);
 
magma: E := EllipticCurve([K![-2,5,12,-10,-6,3],K![-1,-3,3,2,-1,0],K![-1,1,7,-6,-4,2],K![5,-65,-170,75,65,-25],K![41,-174,-737,173,262,-81]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+a+3)\) = \((a^4-a^3-4a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1629a^5-8135a^4+2413a^3+25880a^2-8683a-13541)\) = \((a^4-a^3-4a^2+a+3)^{15}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 8629188747598184440949 \) = \(29^{15}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1635650739851030120050444592454}{8629188747598184440949} a^{5} + \frac{143331287971873231350042950533}{8629188747598184440949} a^{4} + \frac{5370526781114582256956348957640}{8629188747598184440949} a^{3} + \frac{206666298492770208833511012406}{8629188747598184440949} a^{2} - \frac{4022326633841788552173132780163}{8629188747598184440949} a - \frac{1280775053522779070696447027161}{8629188747598184440949} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.4813316253083485410290468295415282899 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.40442 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-4a^2+a+3)\) \(29\) \(1\) \(I_{15}\) Non-split multiplicative \(1\) \(1\) \(15\) \(15\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 29.1-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.