Properties

Base field 6.6.434581.1
Label 6.6.434581.1-29.1-a1
Conductor \((29,a^{3} - 2 a^{2} - 2 a + 3)\)
Conductor norm \( 29 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 5*x^3 + 4*x^2 - 2*x - 1)
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 5*a^3 + 4*a^2 - 2*a - 1);

Weierstrass equation

\( y^2 + \left(a^{5} - a^{4} - 5 a^{3} + a^{2} + 4 a + 1\right) x y + \left(3 a^{5} - 6 a^{4} - 10 a^{3} + 12 a^{2} + 5 a - 2\right) y = x^{3} + \left(-a^{3} + 2 a^{2} + a - 3\right) x^{2} + \left(-34 a^{5} + 81 a^{4} + 65 a^{3} - 117 a^{2} - 27 a + 6\right) x - 56 a^{5} + 163 a^{4} + 31 a^{3} - 264 a^{2} - 13 a + 30 \)
magma: E := ChangeRing(EllipticCurve([a^5 - a^4 - 5*a^3 + a^2 + 4*a + 1, -a^3 + 2*a^2 + a - 3, 3*a^5 - 6*a^4 - 10*a^3 + 12*a^2 + 5*a - 2, -34*a^5 + 81*a^4 + 65*a^3 - 117*a^2 - 27*a + 6, -56*a^5 + 163*a^4 + 31*a^3 - 264*a^2 - 13*a + 30]),K);
sage: E = EllipticCurve(K, [a^5 - a^4 - 5*a^3 + a^2 + 4*a + 1, -a^3 + 2*a^2 + a - 3, 3*a^5 - 6*a^4 - 10*a^3 + 12*a^2 + 5*a - 2, -34*a^5 + 81*a^4 + 65*a^3 - 117*a^2 - 27*a + 6, -56*a^5 + 163*a^4 + 31*a^3 - 264*a^2 - 13*a + 30])
gp (2.8): E = ellinit([a^5 - a^4 - 5*a^3 + a^2 + 4*a + 1, -a^3 + 2*a^2 + a - 3, 3*a^5 - 6*a^4 - 10*a^3 + 12*a^2 + 5*a - 2, -34*a^5 + 81*a^4 + 65*a^3 - 117*a^2 - 27*a + 6, -56*a^5 + 163*a^4 + 31*a^3 - 264*a^2 - 13*a + 30],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((29,a^{3} - 2 a^{2} - 2 a + 3)\) = \( \left(a^{4} - a^{3} - 4 a^{2} + a + 3\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 29 \) = \( 29 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((20511149,a^{4} - 2 a^{3} - 3 a^{2} + 3 a + 19107601,a^{5} - 3 a^{4} - 2 a^{3} + 8 a^{2} + 2488005,a + 1063932,a^{5} - 2 a^{4} - 3 a^{3} + 3 a^{2} + a + 7514021,a^{5} - 2 a^{4} - 3 a^{3} + 4 a^{2} + 3929328)\) = \( \left(a^{4} - a^{3} - 4 a^{2} + a + 3\right)^{5} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 20511149 \) = \( 29^{5} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{114595298439097102868526844523731}{20511149} a^{5} + \frac{151675552625626526718826727580063}{20511149} a^{4} + \frac{560978222901143343582252842098390}{20511149} a^{3} - \frac{193517191812238007197441347247967}{20511149} a^{2} - \frac{589280924297514314247975153893832}{20511149} a - \frac{169413338416695988765174446920769}{20511149} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{4} - a^{3} - 4 a^{2} + a + 3\right) \) \(29\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 29.1-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.