Properties

Label 6.6.434581.1-1.1-a2
Base field 6.6.434581.1
Conductor norm \( 1 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-4a^{4}-6a^{3}+7a^{2}+a-1\right){x}{y}+\left(2a^{5}-4a^{4}-6a^{3}+7a^{2}+2a\right){y}={x}^{3}+\left(a^{5}-4a^{4}+11a^{2}-2a-3\right){x}^{2}+\left(670a^{5}-2194a^{4}+16a^{3}+3065a^{2}-90a-1279\right){x}+20194a^{5}-68427a^{4}+14638a^{3}+73555a^{2}-10467a-21619\)
sage: E = EllipticCurve([K([-1,1,7,-6,-4,2]),K([-3,-2,11,0,-4,1]),K([0,2,7,-6,-4,2]),K([-1279,-90,3065,16,-2194,670]),K([-21619,-10467,73555,14638,-68427,20194])])
 
gp: E = ellinit([Polrev([-1,1,7,-6,-4,2]),Polrev([-3,-2,11,0,-4,1]),Polrev([0,2,7,-6,-4,2]),Polrev([-1279,-90,3065,16,-2194,670]),Polrev([-21619,-10467,73555,14638,-68427,20194])], K);
 
magma: E := EllipticCurve([K![-1,1,7,-6,-4,2],K![-3,-2,11,0,-4,1],K![0,2,7,-6,-4,2],K![-1279,-90,3065,16,-2194,670],K![-21619,-10467,73555,14638,-68427,20194]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1 \) = 1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -299441694155033880148130654153024 a^{5} - 187917845986491657242090310571049 a^{4} + 704001225414123443403572247320027 a^{3} + 352597497846354900118604631201756 a^{2} - 271295440361411180696560081353475 a - 113961855027594415883614627224113 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.014802157632734448067338807327986183064 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 0.641303 \)
Analytic order of Ш: \( 28561 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(13\) 13B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 13 and 39.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 39.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.