Properties

Label 6.6.371293.1-79.1-c4
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 79 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-3a^{2}+a\right){x}{y}+\left(a^{4}-3a^{2}+a\right){y}={x}^{3}+\left(-a^{4}+3a^{2}+a-1\right){x}^{2}+\left(4a^{5}-200a^{4}+73a^{3}+365a^{2}+85a-231\right){x}+24a^{5}-2877a^{4}+1997a^{3}+4755a^{2}-931a-1732\)
sage: E = EllipticCurve([K([0,1,-3,0,1,0]),K([-1,1,3,0,-1,0]),K([0,1,-3,0,1,0]),K([-231,85,365,73,-200,4]),K([-1732,-931,4755,1997,-2877,24])])
 
gp: E = ellinit([Polrev([0,1,-3,0,1,0]),Polrev([-1,1,3,0,-1,0]),Polrev([0,1,-3,0,1,0]),Polrev([-231,85,365,73,-200,4]),Polrev([-1732,-931,4755,1997,-2877,24])], K);
 
magma: E := EllipticCurve([K![0,1,-3,0,1,0],K![-1,1,3,0,-1,0],K![0,1,-3,0,1,0],K![-231,85,365,73,-200,4],K![-1732,-931,4755,1997,-2877,24]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-2a+3)\) = \((a^3-a^2-2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 79 \) = \(79\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((666a^5-938a^4-3298a^3+3552a^2+3555a-661)\) = \((a^3-a^2-2a+3)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -9468276082626847201 \) = \(-79^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{127794683808852859853832701635933437922415}{9468276082626847201} a^{5} + \frac{120367721300657709905855839586570070913343}{9468276082626847201} a^{4} - \frac{405233310886078181372607580308878671807916}{9468276082626847201} a^{3} - \frac{275737199471198880155191606074376860275461}{9468276082626847201} a^{2} + \frac{231318547680046130469307232906240352482422}{9468276082626847201} a + \frac{65809650751079058294984275680386783414465}{9468276082626847201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{13}{4} a^{5} - \frac{43}{4} a^{4} - \frac{39}{4} a^{3} + \frac{127}{4} a^{2} + \frac{11}{4} a - 9 : 8 a^{5} - \frac{59}{8} a^{4} - \frac{179}{8} a^{3} + \frac{49}{2} a^{2} + \frac{3}{8} a - 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.9187900687961089692499549562740333975 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.49691 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-2a+3)\) \(79\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 79.1-c consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.