Properties

Label 6.6.371293.1-53.6-a2
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 53 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+2a\right){x}{y}+\left(a^{5}-4a^{3}+a^{2}+2a-2\right){y}={x}^{3}+\left(a^{5}-4a^{3}+a\right){x}^{2}+\left(a^{5}+2a^{4}-4a^{3}-7a^{2}+a+2\right){x}+a^{5}-4a^{3}+a^{2}+3a-2\)
sage: E = EllipticCurve([K([0,2,-3,-4,1,1]),K([0,1,0,-4,0,1]),K([-2,2,1,-4,0,1]),K([2,1,-7,-4,2,1]),K([-2,3,1,-4,0,1])])
 
gp: E = ellinit([Polrev([0,2,-3,-4,1,1]),Polrev([0,1,0,-4,0,1]),Polrev([-2,2,1,-4,0,1]),Polrev([2,1,-7,-4,2,1]),Polrev([-2,3,1,-4,0,1])], K);
 
magma: E := EllipticCurve([K![0,2,-3,-4,1,1],K![0,1,0,-4,0,1],K![-2,2,1,-4,0,1],K![2,1,-7,-4,2,1],K![-2,3,1,-4,0,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-4a^3+4a^2+4a-2)\) = \((a^5-a^4-4a^3+4a^2+4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 53 \) = \(53\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^4-4a^2-a+4)\) = \((a^5-a^4-4a^3+4a^2+4a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -53 \) = \(-53\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{728461496}{53} a^{5} + \frac{1680516771}{53} a^{4} + \frac{1794516490}{53} a^{3} - \frac{5482970556}{53} a^{2} + \frac{1563670618}{53} a + \frac{714529978}{53} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{4} + a^{3} + 3 a^{2} - 3 a : a^{5} - 3 a^{4} - 2 a^{3} + 10 a^{2} - 3 a - 1 : 1\right)$
Height \(0.0038375737672750227010403851891003939277\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0038375737672750227010403851891003939277 \)
Period: \( 60162.441045792087048848477885082004309 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.27340 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-a^4-4a^3+4a^2+4a-2)\) \(53\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 53.6-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.