Properties

Label 6.6.371293.1-27.2-a2
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 27 \)
CM no
Base change yes
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-5a^{3}+a^{2}+6a-2\right){x}{y}+\left(a^{4}-3a^{2}+a\right){y}={x}^{3}+\left(-a^{5}+4a^{3}+a^{2}-2a-1\right){x}^{2}+\left(294a^{5}-147a^{4}-1315a^{3}+565a^{2}+1084a-640\right){x}+4701a^{5}-3219a^{4}-21365a^{3}+12804a^{2}+18756a-12305\)
sage: E = EllipticCurve([K([-2,6,1,-5,0,1]),K([-1,-2,1,4,0,-1]),K([0,1,-3,0,1,0]),K([-640,1084,565,-1315,-147,294]),K([-12305,18756,12804,-21365,-3219,4701])])
 
gp: E = ellinit([Polrev([-2,6,1,-5,0,1]),Polrev([-1,-2,1,4,0,-1]),Polrev([0,1,-3,0,1,0]),Polrev([-640,1084,565,-1315,-147,294]),Polrev([-12305,18756,12804,-21365,-3219,4701])], K);
 
magma: E := EllipticCurve([K![-2,6,1,-5,0,1],K![-1,-2,1,4,0,-1],K![0,1,-3,0,1,0],K![-640,1084,565,-1315,-147,294],K![-12305,18756,12804,-21365,-3219,4701]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+2a+3)\) = \((a^4-a^3-4a^2+2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(27\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-28a^4+28a^3+112a^2-56a-51)\) = \((a^4-a^3-4a^2+2a+3)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 10460353203 \) = \(27^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{219992945997349946}{2187} a^{4} - \frac{219992945997349946}{2187} a^{3} - \frac{879971783989399784}{2187} a^{2} + \frac{439985891994699892}{2187} a + \frac{153384441473960989}{2187} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.31831319926560216215440950418805769330 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.25426 \)
Analytic order of Ш: \( 2401 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-4a^2+2a+3)\) \(27\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 27.2-a consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{13}) \) 2.2.13.1-507.1-c2